Ricci Flow Emerging from Rotationally Symmetric Degenerate Neckpinches
نویسندگان
چکیده
منابع مشابه
Degenerate Neckpinches in Ricci Flow
In earlier work [2], we derived formal matched asymptotic profiles for families of Ricci flow solutions developing Type-II degenerate neckpinches. In the present work, we prove that there do exist Ricci flow solutions that develop singularities modeled on each such profile. In particular, we show that for each positive integer k ≥ 3, there exist compact solutions in all dimensions m ≥ 3 that be...
متن کاملFormal matched asymptotics for degenerate Ricci flow neckpinches
Gu and Zhu [16] have shown that Type-II Ricci flow singularities develop from nongeneric rotationally symmetric Riemannian metrics on Sn+1 (n ≥ 2). In this paper, we describe and provide plausibility arguments for a detailed asymptotic profile and rate of curvature blow-up that we predict such solutions exhibit.
متن کاملRicci Flow Neckpinches without Rotational Symmetry
We study “warped Berger” solutions ( S1×S3, G(t) ) of Ricci flow: generalized warped products with the metric induced on each fiber {s}×SU(2) a left-invariant Berger metric. We prove that this structure is preserved by the flow, that these solutions develop finite-time neckpinch singularities, and that they asymptotically approach round product metrics in space-time neighborhoods of their singu...
متن کاملOn rotationally symmetric Kähler-Ricci solitons
In this note, using Calabi’s method, we construct rotationally symmetric KählerRicci solitons on the total space of direct sum of fixed hermitian line bundle and its projective compactification, where the curvature of hermitian line bundle is Kähler-Einstein. These examples generalize the construction of Koiso, Cao and Feldman-Ilmanen-Knopf. 1 A little motivation In [1], the authors constructed...
متن کاملKähler-Ricci Flow with Degenerate Initial Class
In [2], the weak Kähler-Ricci flow was introduced for various geometric motivations. In the current work, we take further consideration on setting up the weak flow. Namely, the initial class is allowed to be no longer Kähler. The convergence as t → 0 is of great importance to study for this topic. 1 Motivation and Set-up Kähler-Ricci flow, the complex version of Ricci flow, has been under inten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2015
ISSN: 1073-7928,1687-0247
DOI: 10.1093/imrn/rnv248